Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 70
1.
Ecotoxicol Environ Saf ; 275: 116254, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38547729

Heavy metal exposure leads to multiple system dysfunctions. The mechanisms are likely multifactorial and involve inflammation and oxidative stress. The aim of this study was to evaluate markers and risk factors for atherosclerosis in the LDL receptor knockout mouse model chronically exposed to inorganic mercury (Hg) in the drinking water. Results revealed that Hg exposed mice present increased plasma levels of cholesterol, without alterations in glucose. As a major source and target of oxidants, we evaluated mitochondrial function. We found that liver mitochondria from Hg treated mice show worse respiratory control, lower oxidative phosphorylation efficiency and increased H2O2 release. In addition, Hg induced mitochondrial membrane permeability transition. Erythrocytes from Hg treated mice showed a 50% reduction in their ability to take up oxygen, lower levels of reduced glutathione (GSH) and of antioxidant enzymes (SOD, catalase and GPx). The Hg treatment disturbed immune system cells counting and function. While lymphocytes were reduced, monocytes, eosinophils and neutrophils were increased. Peritoneal macrophages from Hg treated mice showed increased phagocytic activity. Hg exposed mice tissues present metal impregnation and parenchymal architecture alterations. In agreement, increased systemic markers of liver and kidney dysfunction were observed. Plasma, liver and kidney oxidative damage indicators (MDA and carbonyl) were increased while GSH and thiol groups were diminished by Hg exposure. Importantly, atherosclerotic lesion size in the aorta root of Hg exposed mice were larger than in controls. In conclusion, in vivo chronic exposure to Hg worsens the hypercholesterolemia, impairs mitochondrial bioenergetics and redox function, alters immune cells profile and function, causes several tissues oxidative damage and accelerates atherosclerosis development.


Atherosclerosis , Hypercholesterolemia , Mercury , Animals , Mice , Atherosclerosis/chemically induced , Hydrogen Peroxide , Kidney Diseases , Mercury/toxicity , Mice, Knockout , Oxidative Stress/physiology , Receptors, LDL/genetics
2.
Biomolecules ; 13(10)2023 10 22.
Article En | MEDLINE | ID: mdl-37892238

CETP activity reduces plasma HDL-cholesterol concentrations, a correlate of an increased risk of atherosclerotic events. However, our recent findings suggest that CETP expression in macrophages promotes an intracellular antioxidant state, reduces free cholesterol accumulation and phagocytosis, and attenuates pro-inflammatory gene expression. To determine whether CETP expression in macrophages affects atherosclerosis development, we transplanted bone marrow from transgenic mice expressing simian CETP or non-expressing littermates into hypercholesterolemic LDL-receptor-deficient mice. The CETP expression did not change the lipid-stained lesion areas but decreased the macrophage content (CD68), neutrophil accumulation (LY6G), and TNF-α aorta content of young male transplanted mice and decreased LY6G, TNF-α, iNOS, and nitrotyrosine (3-NT) in aged female transplanted mice. These findings suggest that CETP expression in bone-marrow-derived cells reduces the inflammatory features of atherosclerosis. These novel mechanistic observations may help to explain the failure of CETP inhibitors in reducing atherosclerotic events in humans.


Atherosclerosis , Bone Marrow , Humans , Mice , Animals , Male , Female , Aged , Bone Marrow/metabolism , Tumor Necrosis Factor-alpha/metabolism , Cholesterol Ester Transfer Proteins/genetics , Cholesterol Ester Transfer Proteins/metabolism , Atherosclerosis/metabolism , Cholesterol/metabolism , Mice, Transgenic , Mice, Inbred C57BL
3.
Am J Physiol Heart Circ Physiol ; 325(3): H592-H600, 2023 09 01.
Article En | MEDLINE | ID: mdl-37539470

Endothelial dysfunction is an early manifestation of atherosclerosis. The cholesteryl ester transfer protein (CETP) has been considered proatherogenic by reducing plasma HDL levels. However, CETP may exhibit cell- or tissue-specific effects. We have previously reported that male mice expressing the human CETP gene show impaired endothelium-mediated vascular relaxation associated with oxidative stress. Although sexual dimorphisms on the metabolic role of CETP have been proposed, possible sex differences in the vascular effects of CETP were not previously studied. Thus, here we investigated the endothelial function of female CETP transgenic mice as compared with nontransgenic controls (NTg). Aortas from CETP females presented preserved endothelium-dependent relaxation to acetylcholine and an endothelium-dependent reduction of phenylephrine-induced contraction. eNOS phosphorylation (Ser1177) and calcium-induced NO levels were enhanced, whereas reactive oxygen species (ROS) production and NOX2 and SOD2 expression were reduced in the CETP female aortas. Furthermore, CETP females exhibited increased aortic relaxation to 17ß-estradiol (E2) and upregulation of heat shock protein 90 (HSP90) and caveolin-1, proteins that stabilize estrogen receptor (ER) in the caveolae. Indeed, CETP females showed an increased E2-induced relaxation in a manner sensitive to estrogen receptor-α (ERα) and HSP90 inhibitors methylpiperidinopyrazole (MPP) and geldanamycin, respectively. MPP also impaired the relaxation response to acetylcholine in CETP but not in NTg females. Altogether, the study indicates that CETP expression ameliorates the anticontractile endothelial effect and relaxation to E2 in females. This was associated with less ROS production, and increased eNOS-NO and E2-ERα pathways. These results highlight the need for considering the sex-specific effects of CETP on cardiovascular risk.NEW & NOTEWORTHY Here we demonstrated that CETP expression has a sex-specific impact on the endothelium function. Contrary to what was described for males, CETP-expressing females present preserved endothelium-dependent relaxation to acetylcholine and improved relaxation response to 17ß-estradiol. This was associated with less ROS production, increased eNOS-derived NO, and increased expression of proteins that stabilize estrogen receptor-α (ERα), thus increasing E2-ERα signaling sensitivity. These results highlight the need for considering the sex-specific effects of CETP on cardiovascular risk.


Cholesterol Ester Transfer Proteins , Estrogen Receptor alpha , Nitric Oxide Synthase Type III , Animals , Female , Mice , Acetylcholine/pharmacology , Cholesterol Ester Transfer Proteins/genetics , Endothelium/metabolism , Endothelium, Vascular/metabolism , Estradiol/pharmacology , Estrogen Receptor alpha/genetics , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Reactive Oxygen Species/metabolism , Vasodilation
4.
Antioxidants (Basel) ; 11(9)2022 Aug 31.
Article En | MEDLINE | ID: mdl-36139808

Plasma cholesteryl ester transfer protein (CETP) activity diminishes HDL-cholesterol levels and thus may increase atherosclerosis risk. Experimental evidence suggests CETP may also exhibit anti-inflammatory properties, but local tissue-specific functions of CETP have not yet been clarified. Since oxidative stress and inflammation are major features of atherogenesis, we investigated whether CETP modulates macrophage oxidant production, inflammatory and metabolic profiles. Comparing macrophages from CETP-expressing transgenic mice and non-expressing littermates, we observed that CETP expression reduced mitochondrial superoxide anion production and H2O2 release, increased maximal mitochondrial respiration rates, and induced elongation of the mitochondrial network and expression of fusion-related genes (mitofusin-2 and OPA1). The expression of pro-inflammatory genes and phagocytic activity were diminished in CETP-expressing macrophages. In addition, CETP-expressing macrophages had less unesterified cholesterol under basal conditions and after exposure to oxidized LDL, as well as increased HDL-mediated cholesterol efflux. CETP knockdown in human THP1 cells increased unesterified cholesterol and abolished the effects on mitofusin-2 and TNFα. In summary, the expression of CETP in macrophages modulates mitochondrial structure and function to promote an intracellular antioxidant state and oxidative metabolism, attenuation of pro-inflammatory gene expression, reduced cholesterol accumulation, and phagocytosis. These localized functions of CETP may be relevant for the prevention of atherosclerosis and other inflammatory diseases.

5.
Eur Heart J Cardiovasc Pharmacother ; 9(1): 100-115, 2022 12 15.
Article En | MEDLINE | ID: mdl-36138492

AIMS: Considering the inconsistencies in the literature on the atorvastatin effect on blood pressure (BP), we performed these meta-analyses. METHODS AND RESULTS: Through a search of the Excerpta Medica Database (EMBASE), PubMed, and Web of Science databases, 1412 articles were identified, from which 33 randomized clinical trials (RCT) and 44 pre-clinical were selected. Populations from RCT were stratified according to baseline BP and lipid levels. We performed meta-analyses of the effect of atorvastatin on systolic (SBP), diastolic and mean BP; heart rate (HR); HR variability, and baroreflex. Atorvastatin reduced SBP in the overall population (P = 0.05 vs. placebo; P = 0.03 vs. baseline), in normotensive and hyperlipidaemic (P = 0.04 vs. placebo; P = 0.0001 vs. baseline) and in hypertensive and hyperlipidaemic (P = 0.02 vs. placebo; P = 0.008 vs. baseline) individuals in parallel RCT, but it did not affect SBP in normotensive and normolipidaemic individuals (P = 0.51 vs. placebo; P = 0.4 vs. baseline). Although an effect of atorvastatin was detected in hyperlipidaemic individuals, the meta-regression coefficient for the association of low density lipoprotein (LDL)-cholesterol reduction with SBP reduction in the overall population demonstrated that SBP reduction is not dependent on the changes in LDL-cholesterol. A meta-analysis of preclinical reports demonstrated that SBP was reduced in atorvastatin-treated hypertensive and normolipidaemic rats (spontaneously hypertensive rats: P < 0.00001), but not in normotensive and normolipidaemic rats (control rats: P = 0.97). Atorvastatin also reduced the HR in spontaneously hypertensive rat. CONCLUSION: Atorvastatin lowers BP independent of LDL-cholesterol levels. Additional studies are needed to estimate the involvement of the autonomic nervous system in the BP-lowering effect of atorvastatin.


Hypertension , Humans , Rats , Animals , Atorvastatin/pharmacology , Atorvastatin/therapeutic use , Blood Pressure , Heart Rate , Hypertension/drug therapy , Cholesterol
6.
Eur J Pharmacol ; 917: 174750, 2022 Feb 15.
Article En | MEDLINE | ID: mdl-35032488

The mechanisms by which a high-fat diet (HFD) promotes non-alcoholic fatty liver disease (NAFLD) appear to involve liver mitochondrial dysfunction and redox imbalance. The functional loss of the enzyme NAD(P)+ transhydrogenase, a main source of mitochondrial NADPH, results in impaired mitochondrial peroxide removal, pyruvate dehydrogenase inhibition by phosphorylation, and progression of NAFLD in HFD-fed mice. The present study aimed to investigate whether pharmacological reactivation of pyruvate dehydrogenase by dichloroacetate attenuates the mitochondrial redox dysfunction and the development of NAFLD in NAD(P)+ transhydrogenase-null (Nnt-/-) mice fed an HFD (60% of total calories from fat). For this purpose, Nnt-/- mice and their congenic controls (Nnt+/+) were fed chow or an HFD for 20 weeks and received sodium dichloroacetate or NaCl in the final 12 weeks via drinking water. The results showed that HFD reduced the ability of isolated liver mitochondria from Nnt-/- mice to remove peroxide, which was prevented by the dichloroacetate treatment. HFD-fed mice of both Nnt genotypes exhibited increased body and liver mass, as well as a higher content of hepatic triglycerides, but dichloroacetate treatment attenuated these abnormalities only in Nnt-/- mice. Notably, dichloroacetate treatment decreased liver pyruvate dehydrogenase phosphorylation levels and prevented the aggravation of NAFLD in HFD-fed Nnt-/- mice. Conversely, dichloroacetate treatment elicited moderate hepatocyte ballooning in chow-fed mice, suggesting potentially toxic effects. We conclude that the protection against HFD-induced NAFLD by dichloroacetate is associated with its role in reactivating pyruvate dehydrogenase and reestablishing the pyruvate-supported liver mitochondrial capacity to handle peroxide in Nnt-/- mice.


Non-alcoholic Fatty Liver Disease
7.
Antioxid Redox Signal ; 36(13-15): 953-968, 2022 05.
Article En | MEDLINE | ID: mdl-34409856

Significance: Altered plasma triglyceride metabolism and changes in dietary fatty acid types and levels are major contributors to the development of metabolic and cardiovascular diseases such as fatty liver disease, obesity, diabetes, and atherosclerosis. Lipid accumulation in visceral adipose tissue and ectopically in other organs, as well as lipid-induced redox imbalance, is connected to mitochondrial dysfunction in a range of oxidative stress-associated metabolic and degenerative disorders. Recent Advances: Successful mitochondrial adaptive responses in the context of hypertriglyceridemia and dietary bioactive polyunsaturated fatty acids contribute to increase body energy expenditure and reduce oxidative stress, thus allowing several cell types to cope with metabolic challenges and stresses. These responses include mitochondrial redox signaling, mild uncoupling, and changes in network dynamic behavior. Critical Issues: Mitochondrial bioenergetics and redox changes in a lipid overload context are relatively well characterized. However, the turning point between adaptive and maladaptive mitochondrial responses remains a critical issue to be elucidated. In addition, the relationship between changes in fusion/fission machinery and mitochondrial function is less well understood. Future Directions: The effective mitochondrial responses described here support the research for new drug design and diet or nutraceutical formulations targeting mitochondrial mild uncoupling and effective quality control as putative strategies for cardiometabolic diseases. Antioxid. Redox Signal. 36, 953-968.


Hypertriglyceridemia , Mitochondria , Cell Respiration , Energy Metabolism , Humans , Hypertriglyceridemia/metabolism , Lipids/pharmacology , Mitochondria/metabolism
8.
J Atheroscler Thromb ; 29(6): 825-838, 2022 Jun 01.
Article En | MEDLINE | ID: mdl-34092712

AIM: Atherosclerosis is responsible for high morbidity and mortality rates around the world. Local arterial oxidative stress is involved in all phases of atherosclerosis development. Mitochondria is a relevant source of the oxidants, particularly under certain risky conditions, such as hypercholesterolemia. The aim of this study was to test whether lowering the production of mitochondrial oxidants by induction of a mild uncoupling can reduce atherosclerosis in hypercholesterolemic LDL receptor knockout mice. METHODS: The mice were chronically treated with very low doses of DNP (2,4-dinitrophenol) and metabolic, inflammatory and redox state markers and atherosclerotic lesion sizes were determined. RESULTS: The DNP treatment did not change the classical atherosclerotic risk markers, such as plasma lipids, glucose homeostasis, and fat mass, as well as systemic inflammatory markers. However, the DNP treatment diminished the production of mitochondrial oxidants, systemic and tissue oxidative damage markers, peritoneal macrophages and aortic rings oxidants generation. Most importantly, development of spontaneous and diet-induced atherosclerosis (lipid and macrophage content) were significantly decreased in the DNP-treated mice. In vitro, DNP treated peritoneal macrophages showed decreased H2O2 production, increased anti-inflammatory cytokines gene expression and secretion, increased phagocytic activity, and decreased LDL-cholesterol uptake. CONCLUSIONS: These findings are a proof of concept that activation of mild mitochondrial uncoupling is sufficient to delay the development of atherosclerosis under the conditions of hypercholesterolemia and oxidative stress. These results promote future approaches targeting mitochondria for the prevention or treatment of atherosclerosis.


Atherosclerosis , Hypercholesterolemia , Animals , Atherosclerosis/metabolism , Humans , Hydrogen Peroxide , Hypercholesterolemia/metabolism , Mice , Mice, Knockout , Mitochondria/metabolism , Oxidants/metabolism
9.
Biomolecules ; 11(1)2021 01 07.
Article En | MEDLINE | ID: mdl-33430172

Endothelial dysfunction precedes atherosclerosis and is an independent predictor of cardiovascular events. Cholesterol levels and oxidative stress are key contributors to endothelial damage, whereas high levels of plasma high-density lipoproteins (HDL) could prevent it. Cholesteryl ester transfer protein (CETP) is one of the most potent endogenous negative regulators of HDL-cholesterol. However, whether and to what degree CETP expression impacts endothelial function, and the molecular mechanisms underlying the vascular effects of CETP on endothelial cells, have not been addressed. Acetylcholine-induced endothelium-dependent relaxation of aortic rings was impaired in human CETP-expressing transgenic mice, compared to their non-transgenic littermates. However, endothelial nitric oxide synthase (eNOS) activation was enhanced. The generation of superoxide and hydrogen peroxide was increased in aortas from CETP transgenic mice, while silencing CETP in cultured human aortic endothelial cells effectively decreased oxidative stress promoted by all major sources of ROS: mitochondria and NOX2. The endoplasmic reticulum stress markers, known as GADD153, PERK, and ARF6, and unfolded protein response effectors, were also diminished. Silencing CETP reduced endothelial tumor necrosis factor (TNF) α levels, intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) expression, diminishing monocyte adhesion. These results support the notion that CETP expression negatively impacts endothelial cell function, revealing a new mechanism that might contribute to atherosclerosis.


Cholesterol Ester Transfer Proteins/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/pathology , Endothelium, Vascular/physiopathology , Oxidative Stress , Animals , Caveolins/metabolism , Cell Adhesion Molecules/metabolism , Cholesterol Ester Transfer Proteins/antagonists & inhibitors , Cholesterol Ester Transfer Proteins/genetics , Endoplasmic Reticulum Stress , Enzyme Activation , Humans , Mice, Transgenic , NADPH Oxidases/metabolism , Nitric Oxide Synthase Type III/metabolism , Phosphorylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , THP-1 Cells , Vasodilation
10.
Metabolism ; 114: 154429, 2021 01.
Article En | MEDLINE | ID: mdl-33166579

OBJECTIVE: The systemic function of CETP has been well characterized. CETP plasma activity reduces HDL cholesterol and thus increases the risk of atherosclerosis. Here, we investigated whether CETP expression modulate adiposity. METHODS: Body adiposity and energy metabolism related assays and gene/protein expression were compared in CETP transgenic and non-transgenic mice and in hamsters treated with CETP neutralizing antibody. RESULTS: We found that transgenic mice expressing human CETP present less white adipose tissue mass and lower leptinemia than nontransgenic (NTg) littermates. No differences were found in physical activity, food intake, fat fecal excretion, lipogenesis or exogenous lipid accumulation in adipose depots. Nonetheless, adipose lipolysis rates and whole-body energy expenditure were elevated in CETP mice. In accordance, lipolysis-related gene expression and protein content were increased in visceral and brown adipose tissue (BAT). In addition, we verified increased BAT temperature and oxygen consumption. These results were confirmed in two other animal models: 1) hamsters treated with CETP neutralizing antibody and 2) an independent line of transgenic mice expressing simian CETP. CONCLUSIONS: These findings reveal a novel anti-adipogenic role for CETP.


Adipose Tissue, Brown/metabolism , Adiposity/physiology , Cholesterol Ester Transfer Proteins/metabolism , Lipolysis/physiology , Liver/metabolism , Animals , Antibodies, Neutralizing , Cholesterol Ester Transfer Proteins/genetics , Cricetinae , Eating/physiology , Energy Metabolism/physiology , Leptin/blood , Mice , Mice, Transgenic , Motor Activity/physiology
11.
Front Physiol ; 11: 599379, 2020.
Article En | MEDLINE | ID: mdl-33329050

An early event in atherogenesis is the recruitment and infiltration of circulating monocytes and macrophage activation in the subendothelial space. Atherosclerosis subsequently progresses as a unresolved inflammatory disease, particularly in hypercholesterolemic conditions. Although physical exercise training has been a widely accepted strategy to inhibit atherosclerosis, its impact on arterial wall inflammation and macrophage phenotype and function has not yet been directly evaluated. Thus, the aim of this study was to investigate the effects of aerobic exercise training on the inflammatory state of atherosclerotic lesions with a focus on macrophages. Hypercholesterolemic LDL-receptor-deficient male mice were subjected to treadmill training for 8 weeks and fed a high-fat diet. Analyses included plasma lipoprotein and cytokine levels; aortic root staining for lipids (oil red O); macrophages (CD68, MCP1 and IL1ß); oxidative (nitrotyrosine and, DHE) and endoplasmic reticulum (GADD) stress markers. Primary bone marrow-derived macrophages (BMDM) were assayed for migration activity, motility phenotype (Rac1 and F-actin) and inflammation-related gene expression. Plasma levels of HDL cholesterol were increased, while levels of proinflammatory cytokines (TNFa, IL1b, and IL6) were markedly reduced in the exercised mice. The exercised mice developed lower levels of lipid content and inflammation in atherosclerotic plaques. Additionally, lesions in the exercised mice had lower levels of oxidative and ER stress markers. BMDM isolated from the exercised mice showed a marked reduction in proinflammatory cytokine gene expression and migratory activity and a disrupted motility phenotype. More importantly, bone marrow from exercised mice transplanted into sedentary mice led to reduced atherosclerosis in the recipient sedentary mice, thus suggesting that epigenetic mechanisms are associated with exercise. Collectively, the presented data indicate that exercise training prevents atherosclerosis by inhibiting bone marrow-derived macrophage recruitment and activation.

12.
Adv Exp Med Biol ; 1276: 15-25, 2020.
Article En | MEDLINE | ID: mdl-32705591

In this chapter, we present the major advances in CETP research since the detection, isolation, and characterization of its activity in the plasma of humans and several species. Since CETP is a major modulator of HDL plasma levels, the clinical importance of CETP activity was recognized very early. We describe the participation of CETP in reverse cholesterol transport, conflicting results in animal and human genetic studies, possible new functions of CETP, and the results of the main clinical trials on CETP inhibition. Despite major setbacks in clinical trials, the hypothesis that CETP inhibitors are anti-atherogenic in humans is still being tested.


Cardiovascular Diseases , Cholesterol Ester Transfer Proteins , Lipid Metabolism , Animals , Atherosclerosis , Biological Transport , Humans
13.
Mol Aspects Med ; 71: 100840, 2020 02.
Article En | MEDLINE | ID: mdl-31882067

In the first part of this review, we summarize basic mitochondrial bioenergetics concepts showing that mitochondria are critical regulators of cell life and death. Until a few decades ago, mitochondria were considered to play essential roles only in respiration, ATP formation, non-shivering thermogenesis and a variety of metabolic pathways. However, the concept presented by Peter Mitchell regarding coupling between electron flow and ATP synthesis through the intermediary of a H+ electrochemical potential leads to the recognition that the proton-motive force also regulates a series of relevant cell signalling processes, such as superoxide generation, redox balance and Ca2+ handling. Alterations in these processes lead to cell death and disease states. In the second part of this review, we discuss the role of mitochondrial dysfunctions in the specific context of hypercholesterolemia-induced atherosclerosis. We provide a literature analysis that indicates a decisive role of mitochondrial redox dysfunction in the development of atherosclerosis and discuss the underlying molecular mechanisms. Finally, we highlight the potential mitochondrial-targeted therapeutic strategies that are relevant for atherosclerosis.


Atherosclerosis/metabolism , Hypercholesterolemia/metabolism , Mitochondria/metabolism , Adenosine Triphosphate/metabolism , Calcium/metabolism , Energy Metabolism , Humans
14.
Biochem J ; 476(24): 3769-3789, 2019 12 23.
Article En | MEDLINE | ID: mdl-31803904

The atherosclerosis prone LDL receptor knockout mice (Ldlr-/-, C57BL/6J background) carry a deletion of the NADP(H)-transhydrogenase gene (Nnt) encoding the mitochondrial enzyme that catalyzes NADPH synthesis. Here we hypothesize that both increased NADPH consumption (due to increased steroidogenesis) and decreased NADPH generation (due to Nnt deficiency) in Ldlr-/- mice contribute to establish a macrophage oxidative stress and increase atherosclerosis development. Thus, we compared peritoneal macrophages and liver mitochondria from three C57BL/6J mice lines: Ldlr and Nnt double mutant, single Nnt mutant and wild-type. We found increased oxidants production in both mitochondria and macrophages according to a gradient: double mutant > single mutant > wild-type. We also observed a parallel up-regulation of mitochondrial biogenesis (PGC1a, TFAM and respiratory complexes levels) and inflammatory (iNOS, IL6 and IL1b) markers in single and double mutant macrophages. When exposed to modified LDL, the single and double mutant cells exhibited significant increases in lipid accumulation leading to foam cell formation, the hallmark of atherosclerosis. Nnt deficiency cells showed up-regulation of CD36 and down-regulation of ABCA1 transporters what may explain lipid accumulation in macrophages. Finally, Nnt wild-type bone marrow transplantation into LDLr-/- mice resulted in reduced diet-induced atherosclerosis. Therefore, Nnt plays a critical role in the maintenance of macrophage redox, inflammatory and cholesterol homeostasis, which is relevant for delaying the atherogenesis process.


Atherosclerosis/metabolism , Macrophages, Peritoneal/metabolism , NADP/metabolism , Oxidative Stress , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Animals , Atherosclerosis/chemically induced , Atherosclerosis/genetics , Biomarkers , CD36 Antigens/metabolism , Diet, High-Fat , Gene Expression Regulation , Genotype , Glutathione/metabolism , Inflammation , Male , Mice , Mice, Knockout , Mitochondria/metabolism , Mutation , NADP Transhydrogenases , Receptors, LDL/genetics , Superoxides/metabolism
15.
J Transl Med ; 17(1): 285, 2019 08 27.
Article En | MEDLINE | ID: mdl-31455371

BACKGROUND: HMG-CoA reductase inhibitors (statins) are cholesterol-lowering drugs widely used to treat hypercholesterolemia and prevent cardiovascular disease. Statins are generally well tolerated, but adverse reactions may occur, particularly myopathy and new onset of diabetes. The exact mechanism of statin-induced myopathy and diabetes has not been fully elucidated. We have previously shown that treatment of hypercholesterolemic (LDLr-/-) mice with pravastatin for 2 months decreased pancreatic islet insulin secretion and increased oxidative stress and cell death, but no glucose intolerance was observed. The purpose of the current work was to study long-term pravastatin effects on glucose homeostasis, insulin sensitivity, muscle protein turnover and cell viability. METHODS: LDLr-/- mice were treated with pravastatin for 3, 6 and 10 months. Glucose tolerance, insulin resistance and glucose-stimulated insulin secretion were evaluated. The rates of protein synthesis and degradation were determined in gastrocnemius muscle after 10 months of treatment. Insulin signalling, oxidative stress and cell death were analysed in vitro using C2C12 myotubes. RESULTS: After 6 and 10 months of treatment, these mice became glucose intolerant, and after 10 months, they exhibited marked insulin resistance. Reduced islet glucose-stimulated insulin secretion was observed after the 3rd month of treatment. Mice treated for 10 months showed significantly decreased body weight and increased muscle protein degradation. In addition, muscle chymotrypsin-like proteasomal activity and lysosomal cathepsin were markedly elevated. C2C12 myotubes exposed to increasing concentrations of pravastatin presented dose-dependent impairment of insulin-induced Akt phosphorylation, increased apoptotic markers (Bax protein and cleaved caspase-3) and augmented superoxide anion production. CONCLUSIONS: In addition to reduced insulin secretion, long-term pravastatin treatment induces insulin resistance and muscle wasting. These results suggest that the diabetogenic effect of statins is linked to the appearance of myotoxicity induced by oxidative stress, impaired insulin signalling, proteolysis and apoptosis.


Diabetes Mellitus, Experimental/complications , Hypercholesterolemia/complications , Insulin Resistance , Myotoxicity/complications , Pravastatin/adverse effects , Animals , Apoptosis , Blood Glucose/metabolism , Body Weight , Cell Line , Diabetes Mellitus, Experimental/blood , Fasting/blood , Female , Glucose Intolerance/blood , Glucose Intolerance/complications , Homeostasis , Hypercholesterolemia/blood , Insulin/blood , Insulin Secretion , Mice, Inbred C57BL , Models, Biological , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle Proteins/metabolism , Myotoxicity/blood , Oxidative Stress , Phosphorylation , Proteolysis , Receptors, LDL/deficiency , Receptors, LDL/metabolism , Signal Transduction , Superoxides/metabolism
16.
J Cell Physiol ; 234(7): 11047-11059, 2019 07.
Article En | MEDLINE | ID: mdl-30536661

New onset of diabetes is associated with the use of statins. We have recently demonstrated that pravastatin-treated hypercholesterolemic LDL receptor knockout (LDLr-/- ) mice exhibit reductions in insulin secretion and increased islet cell death and oxidative stress. Here, we hypothesized that these diabetogenic effects of pravastatin could be counteracted by treatment with the antioxidant coenzyme Q 10 (CoQ 10 ), an intermediate generated in the cholesterol synthesis pathway. LDLr -/- mice were treated with pravastatin and/or CoQ 10 for 2 months. Pravastatin treatment resulted in a 75% decrease of liver CoQ 10 content. Dietary CoQ 10 supplementation of pravastatin-treated mice reversed fasting hyperglycemia, improved glucose tolerance (20%) and insulin sensitivity (>2-fold), and fully restored islet glucose-stimulated insulin secretion impaired by pravastatin (40%). Pravastatin had no effect on insulin secretion of wild-type mice. In vitro, insulin-secreting INS1E cells cotreated with CoQ 10 were protected from cell death and oxidative stress induced by pravastatin. Simvastatin and atorvastatin were more potent in inducing dose-dependent INS1E cell death (10-15-fold), which were also attenuated by CoQ 10 cotreatment. Together, these results demonstrate that statins impair ß-cell redox balance, function and viability. However, CoQ 10 supplementation can protect the statins detrimental effects on the endocrine pancreas.


Hypercholesterolemia/drug therapy , Insulin-Secreting Cells/drug effects , Pravastatin/adverse effects , Receptors, LDL/metabolism , Ubiquinone/analogs & derivatives , Animals , Cell Line , Cell Survival , Diabetes Mellitus/chemically induced , Dietary Supplements , Female , Glucose Tolerance Test , Hydrogen Peroxide , Insulin , Liver/metabolism , Mice , Mice, Knockout , Pravastatin/therapeutic use , Receptors, LDL/genetics , Ubiquinone/pharmacology
17.
Free Radic Biol Med ; 129: 1-24, 2018 12.
Article En | MEDLINE | ID: mdl-30172747

Mitochondria possess a Ca2+ transport system composed of separate Ca2+ influx and efflux pathways. Intramitochondrial Ca2+ concentrations regulate oxidative phosphorylation, required for cell function and survival, and mitochondrial redox balance, that participates in a myriad of signaling and damaging pathways. The interaction between Ca2+ accumulation and redox imbalance regulates opening and closing of a highly regulated inner membrane pore, the membrane permeability transition pore (PTP). In this review, we discuss the regulation of the PTP by mitochondrial oxidants, reactive nitrogen species, and the interactions between these species and other PTP inducers. In addition, we discuss the involvement of mitochondrial redox imbalance and PTP in metabolic conditions such as atherogenesis, diabetes, obesity and in mtDNA stability.


Atherosclerosis/metabolism , Calcium/metabolism , Diabetes Mellitus/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Obesity/metabolism , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Cations, Divalent , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Diabetes Mellitus/genetics , Diabetes Mellitus/pathology , Humans , Ion Transport , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membranes/metabolism , Obesity/genetics , Obesity/pathology , Oxidation-Reduction , Oxidative Phosphorylation , Permeability , Reactive Nitrogen Species/metabolism , Signal Transduction
18.
Front Pharmacol ; 9: 685, 2018.
Article En | MEDLINE | ID: mdl-29997512

Statins are the preferred therapy to treat hypercholesterolemia. Their main action consists of inhibiting the cholesterol biosynthesis pathway. Previous studies report mitochondrial oxidative stress and membrane permeability transition (MPT) of several experimental models submitted to diverse statins treatments. The aim of the present study was to investigate whether chronic treatment with the hydrophilic pravastatin induces hepatotoxicity in LDL receptor knockout mice (LDLr-/-), a model for human familial hypercholesterolemia. We evaluated respiration and reactive oxygen production rates, cyclosporine-A sensitive mitochondrial calcium release, antioxidant enzyme activities in liver mitochondria or homogenates obtained from LDLr-/- mice treated with pravastatin for 3 months. We observed that pravastatin induced higher H2O2 production rate (40%), decreased activity of aconitase (28%), a superoxide-sensitive Krebs cycle enzyme, and increased susceptibility to Ca2+-induced MPT (32%) in liver mitochondria. Among several antioxidant enzymes, only glucose-6-phosphate dehydrogenase (G6PD) activity was increased (44%) in the liver of treated mice. Reduced glutathione content and reduced to oxidized glutathione ratio were increased in livers of pravastatin treated mice (1.5- and 2-fold, respectively). The presence of oxidized lipid species were detected in pravastatin group but protein oxidation markers (carbonyl and SH- groups) were not altered. Diet supplementation with the antioxidants CoQ10 or creatine fully reversed all pravastatin effects (reduced H2O2 generation, susceptibility to MPT and normalized aconitase and G6PD activity). Taken together, these results suggest that 1- pravastatin induces liver mitochondrial redox imbalance that may explain the hepatic side effects reported in a small number of patients, and 2- the co-treatment with safe antioxidants neutralize these side effects.

19.
Cell Biol Int ; 42(6): 742-746, 2018 Jun.
Article En | MEDLINE | ID: mdl-29424467

Mitochondrial redox imbalance and high Ca2+ uptake induce the opening of the permeability transition pore (PTP) that leads to disruption of energy-linked mitochondrial functions and triggers cell death in many disease states. In this review, we discuss the major results from our studies investigating the consequences of NAD(P)-transhydrogenase (NNT) deficiency, and of statins treatment for mitochondrial functions and susceptibility to Ca2+ -induced PTP. We highlight the aggravation of high fat diet-induced fatty liver disease in the context of NNT deficiency and the role of antioxidants in the prevention of statins toxicity to mitochondria.


Calcium/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , NADP Transhydrogenases/genetics , Animals , Diet, High-Fat , Fatty Liver/drug therapy , Fatty Liver/etiology , Fatty Liver/veterinary , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Mitochondria/drug effects , Mitochondrial Permeability Transition Pore , NADP Transhydrogenases/metabolism , Permeability/drug effects , Ubiquinone/analogs & derivatives , Ubiquinone/chemistry , Ubiquinone/metabolism
20.
Cell Biol Int ; 42(6): 747-753, 2018 Jun.
Article En | MEDLINE | ID: mdl-29427465

Cardiovascular diseases are major causes of death worldwide. Beyond the classical cholesterol risk factor, other conditions such as oxidative stress are well documented to promote atherosclerosis. The Mangifera indica L. extract (Vimang®) was reported to present antioxidant and hypocholesterolemic properties. Thus, here we evaluate the effects of Vimang treatment on risk factors of the atherosclerosis prone model of familial hypercholesterolemia, the LDL receptor knockout mice. Mice were treated with Vimang during 2 weeks and were fed a cholesterol-enriched diet during the second week. The Vimang treated mice presented significantly reduced levels of plasma (15%) and liver (20%) cholesterol, increased plasma total antioxidant capacity (10%) and decreased reactive oxygen species (ROS) production by spleen mononuclear cells (50%), P < 0.05 for all. In spite of these benefits, the average size of aortic atherosclerotic lesions stablished in this short experimental period did not change significantly in Vimang treated mice. Therefore, in this study we demonstrated that Vimang has protective effects on systemic and tissue-specific risk factors, but it is not sufficient to promote a reduction in the initial steps of atherosclerosis development. In addition, we disclosed a new antioxidant target of Vimang, the spleen mononuclear cells that might be relevant for more advanced stages of atherosclerosis.


Cholesterol/blood , Mangifera/chemistry , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Receptors, LDL/genetics , Animals , Aorta/pathology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/veterinary , Cholesterol/analysis , Diet, High-Fat , Leukocytes/cytology , Leukocytes/metabolism , Liver/drug effects , Liver/metabolism , Mangifera/metabolism , Mice , Mice, Knockout , Mitochondria/metabolism , NADP/chemistry , NADP/metabolism , Plant Extracts/chemistry , Reactive Oxygen Species/metabolism , Receptors, LDL/deficiency , Triglycerides/analysis , Triglycerides/blood
...